282 research outputs found

    X-chromosome trinucleotide repeats: effects on brain structure (British Human Genetics Conference, Abstract 4.12)

    Get PDF
    published_or_final_versio

    MRI brain scan study of minor physical anomalies to aid the early diagnosis of autism

    Get PDF
    Poster Sessionspublished_or_final_versionThe 27th International College of Neuropsychopharmacology Congress (CINP 2010), Hong Kong, China, 6-10 June 2010. In International Journal of Neuropsychopharmacology, 2010, v. 13, suppl. S1, p. 182, abstract no. P-14.03

    MRI Study of Minor Physical Anomaly in Childhood Autism Implicates Aberrant Neurodevelopment in Infancy

    Get PDF
    Background: MPAs (minor physical anomalies) frequently occur in neurodevelopmental disorders because both face and brain are derived from neuroectoderm in the first trimester. Conventionally, MPAs are measured by evaluation of external appearance. Using MRI can help overcome inherent observer bias, facilitate multi-centre data acquisition, and explore how MPAs relate to brain dysmorphology in the same individual. Optical MPAs exhibit a tightly synchronized trajectory through fetal, postnatal and adult life. As head size enlarges with age, inter-orbital distance increases, and is mostly completed before age 3 years. We hypothesized that optical MPAs might afford a retrospective 'window' to early neurodevelopment; specifically, inter-orbital distance increase may represent a biomarker for early brain dysmaturation in autism. Methods: We recruited 91 children aged 7-16; 36 with an autism spectrum disorder and 55 age- and gender-matched typically developing controls. All children had normal IQ. Inter-orbital distance was measured on T1-weighted MRI scans. This value was entered into a voxel-by-voxel linear regression analysis with grey matter segmented from a bimodal MRI data-set. Age and total brain tissue volume were entered as covariates. Results: Intra-class coefficient for measurement of the inter-orbital distance was 0.95. Inter-orbital distance was significantly increased in the autism group (p = 0.03, 2-tailed). The autism group showed a significant relationship between inter-orbital distance grey matter volume of bilateral amygdalae extending to the unci and inferior temporal poles. Conclusions: Greater inter-orbital distance in the autism group compared with healthy controls is consistent with infant head size expansion in autism. Inter-orbital distance positively correlated with volume of medial temporal lobe structures, suggesting a link to "social brain" dysmorphology in the autism group. We suggest these data support the role of optical MPAs as a "fossil record" of early aberrant neurodevelopment, and potential biomarker for brain dysmaturation in autism. © 2011 Cheung et al.published_or_final_versio

    Do adults with high functioning autism or Asperger Syndrome differ in empathy and emotion recognition?

    Get PDF
    The present study examined whether adults with high functioning autism (HFA) showed greater difficulties in (i) their self-reported ability to empathise with others and/or (ii) their ability to read mental states in others’ eyes than adults with Asperger syndrome (AS). The Empathy Quotient (EQ) and ‘Reading the Mind in the Eyes’ Test (Eyes Test) were compared in 43 adults with AS and 43 adults with HFA. No significant difference was observed on EQ score between groups, while adults with AS performed significantly better on the Eyes Test than those with HFA. This suggests that adults with HFA may need more support, particularly in mentalizing and complex emotion recognition, and raises questions about the existence of subgroups within autism spectrum conditions

    Novel epigenetic clock for fetal brain development predicts prenatal age for cellular stem cell models and derived neurons

    Get PDF
    Induced pluripotent stem cells (iPSCs) and their differentiated neurons (iPSC-neurons) are a widely used cellular model in the research of the central nervous system. However, it is unknown how well they capture age-associated processes, particularly given that pluripotent cells are only present during the earliest stages of mammalian development. Epigenetic clocks utilize coordinated age-associated changes in DNA methylation to make predictions that correlate strongly with chronological age. It has been shown that the induction of pluripotency rejuvenates predicted epigenetic age. As existing clocks are not optimized for the study of brain development, we developed the fetal brain clock (FBC), a bespoke epigenetic clock trained in human prenatal brain samples in order to investigate more precisely the epigenetic age of iPSCs and iPSC-neurons. The FBC was tested in two independent validation cohorts across a total of 194 samples, confirming that the FBC outperforms other established epigenetic clocks in fetal brain cohorts. We applied the FBC to DNA methylation data from iPSCs and embryonic stem cells and their derived neuronal precursor cells and neurons, finding that these cell types are epigenetically characterized as having an early fetal age. Furthermore, while differentiation from iPSCs to neurons significantly increases epigenetic age, iPSC-neurons are still predicted as being fetal. Together our findings reiterate the need to better understand the limitations of existing epigenetic clocks for answering biological research questions and highlight a limitation of iPSC-neurons as a cellular model of age-related diseases

    Autism as a disorder of neural information processing: directions for research and targets for therapy

    Get PDF
    The broad variation in phenotypes and severities within autism spectrum disorders suggests the involvement of multiple predisposing factors, interacting in complex ways with normal developmental courses and gradients. Identification of these factors, and the common developmental path into which theyfeed, is hampered bythe large degrees of convergence from causal factors to altered brain development, and divergence from abnormal brain development into altered cognition and behaviour. Genetic, neurochemical, neuroimaging and behavioural findings on autism, as well as studies of normal development and of genetic syndromes that share symptoms with autism, offer hypotheses as to the nature of causal factors and their possible effects on the structure and dynamics of neural systems. Such alterations in neural properties may in turn perturb activity-dependent development, giving rise to a complex behavioural syndrome many steps removed from the root causes. Animal models based on genetic, neurochemical, neurophysiological, and behavioural manipulations offer the possibility of exploring these developmental processes in detail, as do human studies addressing endophenotypes beyond the diagnosis itself

    Psychophysiological Markers of Vulnerability to Psychopathology in Men with an Extra X Chromosome (XXY)

    Get PDF
    Studying genetically defined syndromes associated with increased risk for psychopathology may help in understanding neurodevelopmental mechanisms related to risk for psychopathology. Klinefelter syndrome (47,XXY) is one of the most common sex chromosomal aneuploidies (1 in 650 male births) and associated with increased vulnerability for psychopathology, including psychotic symptoms. Yet, it remains unknown whether this increased risk is associated with underlying psychophysiological mechanisms that are typically deficient in individuals with psychotic disorders. The present study assessed three “classic” psychophysiological markers of psychosis in Klinefelter syndrome (KS): smooth pursuit eye movements (SPEM), prepulse inhibition (PPI) and P50 suppression. Fourteen adults with KS and 15 non-clinical adults participated in the study. Data on SPEM (reflecting visuo-motor control) as well as PPI and P50 suppression (reflecting sensory gating) were collected. Dysfunctions in SPEM were observed in individuals with KS, with less smooth pursuit as expressed in lower position gain. Also, reduced sensory gating in individuals with KS was suggested by significantly reduced prepulse inhibition of the startle response (PPI) (effect size 1.6). No abnormalities were found in suppression of the P50 (effect size 0.6). We speculate that impairments in these psychophysiological mechanisms may reflect core brain dysfunctions that may also mediate the described increased vulnerability for psychotic symptoms in KS. Although speculative, such deficit specific, rather than disorder specific, psychophysiological dysfunctions in KS might convey vulnerability to other types of psychopathology as well. As KS already can be diagnosed prenatally, the predictive value of childhood impairments in prepulse inhibition and smooth pursuit for development of psychopathology later in life could be assessed. In sum, studying individuals with KS may prove to be an avenue of research leading to new hypotheses and insights into “at risk” pathways to psychopathology

    Prenatal Immune Challenge Is an Environmental Risk Factor for Brain and Behavior Change Relevant to Schizophrenia: Evidence from MRI in a Mouse Model

    Get PDF
    Objectives: Maternal infection during pregnancy increases risk of severe neuropsychiatric disorders, including schizophrenia and autism, in the offspring. The most consistent brain structural abnormality in patients with schizophrenia is enlarged lateral ventricles. However, it is unknown whether the aetiology of ventriculomegaly in schizophrenia involves prenatal infectious processes. The present experiments tested the hypothesis that there is a causal relationship between prenatal immune challenge and emergence of ventricular abnormalities relevant to schizophrenia in adulthood. Method: We used an established mouse model of maternal immune activation (MIA) by the viral mimic Polyl:C administered in early (day 9) or late (day 17) gestation. Automated voxel-based morphometry mapped cerebrospinal fluid across the whole brain of adult offspring and the results were validated by manual region-of-interest tracing of the lateral ventricles. Parallel behavioral testing determined the existence of schizophrenia-related sensorimotor gating abnormalities. Results: Polyl:C-induced immune activation, in early but not late gestation, caused marked enlargement of lateral ventricles in adulthood, without affecting total white and grey matter volumes. This early exposure disrupted sensorimotor gating, in the form of prepulse inhibition. Identical immune challenge in late gestation resulted in significant expansion of 4th ventricle volume but did not disrupt sensorimotor gating. Conclusions: Our results provide the first experimental evidence that prenatal immune activation is an environmental risk factor for adult ventricular enlargement relevant to schizophrenia. The data indicate immune-associated environmental insults targeting early foetal development may have more extensive neurodevelopmental impact than identical insults in late prenatal life. © 2009 Li et al.published_or_final_versio

    Adult hippocampal neuroplasticity triggers susceptibility to recurrent depression

    Get PDF
    Depression is a highly prevalent and recurrent neuropsychiatric disorder associated with alterations in emotional and cognitive domains. Neuroplastic phenomena are increasingly considered central to the etiopathogenesis of and recovery from depression. Nevertheless, a high number of remitted patients experience recurrent episodes of depression, remaining unclear how previous episodes impact on behavior and neuroplasticity and/or whether modulation of neuroplasticity is important to prevent recurrent depression. Through re-exposure to an unpredictable chronic mild stress protocol in rats, we observed the re-appearance of emotional and cognitive deficits. Furthermore, treatment with the antidepressants fluoxetine and imipramine was effective to promote sustained reversion of a depressive-like phenotype; however, their differential impact on adult hippocampal neuroplasticity triggered a distinct response to stress re-exposure: while imipramine re-established hippocampal neurogenesis and neuronal dendritic arborization contributing to resilience to recurrent depressive-like behavior, stress re-exposure in fluoxetine-treated animals resulted in an overproduction of adult-born neurons along with neuronal atrophy of granule neurons, accounting for an increased susceptibility to recurrent behavioral changes typical of depression. Strikingly, cell proliferation arrest compromised the behavior resilience induced by imipramine and buffered the susceptibility to recurrent behavioral changes promoted by fluoxetine. This study shows that previous exposure to a depressive-like episode impacts on the behavioral and neuroanatomical changes triggered by subsequent re-exposure to similar experimental conditions and reveals that the proper control of adult hippocampal neuroplasticity triggered by antidepressants is essential to counteract recurrent depressive-like episodes.FCT (IF/01079/2014). This article has been developed under the scope of the project NORTE-01-0145-FEDER-000013, supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER). This work has been funded by FEDER funds, through the Competitiveness Factors Operational Programme (COMPETE), and by National funds, through the FCT, under the scope of the project POCI-01-0145-FEDER-007038info:eu-repo/semantics/publishedVersio

    Gene Expression Changes in GABAA Receptors and Cognition Following Chronic Ketamine Administration in Mice

    Get PDF
    Ketamine is a well-known anesthetic agent and a drug of abuse. Despite its widespread use and abuse, little is known about its long-term effects on the central nervous system. The present study was designed to evaluate the effect of long-term (1- and 3-month) ketamine administration on learning and memory and associated gene expression levels in the brain. The Morris water maze was used to assess spatial memory and gene expression changes were assayed using Affymetrix Genechips; a focus on the expression of GABAA receptors that mediate a tonic inhibition in the brain, was confirmed by quantitative real-time PCR and western blot. Compared with saline controls, there was a decline in learning and memory performance in the ketamine-treated mice. Genechip results showed that 110 genes were up-regulated and 136 genes were down-regulated. An ontology analysis revealed the most significant effects of ketamine were on GABAA receptors. In particular, there was a significant up-regulation of both mRNA and protein levels of the alpha 5 subunit (Gabra5) of the GABAA receptors in the prefrontal cortex. In conclusion, chronic exposure to ketamine impairs working memory in mice, which may be explained at least partly by up-regulation of Gabra5 subunits in the prefrontal cortex
    corecore